
DeepForge: A Scientific Gateway for Deep Learning

Brian Broll

Institute for Software Integrated Systems

Vanderbilt University

Nashville, TN, USA

brian.broll@vanderbilt.edu

Miklós Maróti

Bolyai Institute

University of Szeged

Szeged, Hungary

mmaroti@math.u-szeged.hu

Péter Völgyesi

Institute for Software Integrated Systems

Vanderbilt University

Nashville, TN, USA

peter.volgyesi@vanderbilt.edu

Ákos Lédeczi

Institute for Software Integrated Systems

Vanderbilt University

Nashville, TN, USA

akos.ledeczi@vanderbilt.edu

Abstract—We introduce DeepForge, a gateway to deep learning
for the scientific community. DeepForge is designed to lower the
barrier to entry and facilitate the rapid development of deep
learning models. Utilizing a cloud-based infrastructure, Deep-
Forge facilitates rapid development by promoting reproducibility,
collaboration and remote execution of machine learning pipelines.
This represents an interdisciplinary approach to facilitating deep
learning development as it leverages the strengths of Model
Integrated Computing to provide a powerful hybrid textual-
visual programming platform for the scientific community.

Index Terms—computer aided analysis, web services, artificial
neural networks, open source software

I. INTRODUCTION

Deep learning has proven to be a very powerful machine

learning approach in a variety of domains from image clas-

sification [1] to audio speech recognition [2]. A significant

contributor to the success of deep neural networks is their

ability to model very complex functions; this enables neural

network architectures to be applied to various domains and the

models to be confirmed empirically. Neural networks have also

shown to be very effective when applied to scientific domains

including bioinformatics, chemistry, and astronomy [3]–[8].

Despite this effectiveness, there are still significant barriers

to deep learning for the scientific community. Programming is

a necessary prerequisite for developing and evaluating deep

learning models and mistakes are often only discovered at

runtime. Due to the emphasis on empirical validation, it is also

very important that researchers and practitioners are equipped

with the appropriate tooling to allow them to iterate quickly,

work together, and easily integrate the latest advancements

in research into their own projects. To this end, we have

developed DeepForge, a novel gateway to deep learning for the

scientific community based on two main computing technolo-

gies, TensorFlow (via Keras) and Model Integrated Computing

using WebGME.

TensorFlow is a high performance computing framework

supporting machine learning including the development of

deep learning models [9]. It supports a large number of differ-

ent deployment platforms including CPU, GPU, and TPU and

can run on a wide variety of devices from clusters to mobile

devices. This broad support for deployment platforms makes

TensorFlow an ideal backend for the training of deep learning

models and promote the reuse of the existing computational

resources across scientific domains and organizations.

Model Integrated Computing (MIC) is the technique of

using models, or domain specific abstractions, for developing

systems or applications [10] and was developed to aid in the

rapid design and implementation of complex applications and

systems. The Generic Modeling Environment (GME) is an

open source MIC tool developed for creating domain specific

modeling environments and has been effectively applied to a

number of domains including embedded systems and mecha-

tronics [11]–[17].

WebGME, the successor to GME, leverages a number of

modern features such as a cloud-based infrastructure, inte-

grated version control and real-time collaborative editing [18].

WebGME also introduces a number of powerful modeling

abstractions, such as prototypal inheritance and mixins, to

improve its ability to model complex systems [19]. WebGME

has been used to improve development in a variety of domains

from medical capsule robotics to space radiation [20]–[23].

DeepForge is a development environment with deeply in-

tegrated domain specific modeling aspects created with We-

bGME. This enables DeepForge to leverage the strengths of

Model Integrated Computing to facilitate the rapid devel-

opment of deep learning models and accessibility of deep

learning while also improving experiment reproducibility. In

doing so, we provide a powerful open source platform for deep

learning, with aims to build a community around the platform

in which users can contribute custom DeepForge extensions

as well as seamlessly share and collaborate with one another.

The structure of the paper is as follows. In Section II,

we will present the conceptual framework for creating and

executing machine learning tasks. Section III presents the

design of the DeepForge platform.



II. CORE CONCEPTS

DeepForge presents four main concepts for testing and

training machine learning models: Pipelines, Operations, Ex-

ecutions and Jobs.

Operations are atomic functions which accept one or more

named inputs and return one or more named outputs. Op-

eration attributes can be defined for an operation at design

time, providing adjustable parameters for the operation. At

runtime, an operation’s attributes are provided as constants to

the operation. Operations can also define references which,

like attributes, are specified at design time. Unlike attributes,

a reference is a pointer to another artifact, such as a neural

network architecture.

A Pipeline represents a machine learning task, such as

model training, testing or data preprocessing composed of

operations. Operations are composed by directing an output

of a single operation, represented as a port, into an input of

one or more other operations. That is, these operations are

composed into acyclic data flow graphs. Pipelines can also

contain Input and Output operations for representing input data

to the pipeline and output data from the pipeline. That is, the

Input operation is an initial node in a pipeline and Output

operation is a terminal node.

Figure 1 shows an example of a pipeline with four oper-

ations. The first operation downloads and prepares training

and testing sets from the mnist [24] dataset. The training

data is then provided to the “Train” operation which trains

a neural network on the given input. The “Train” operation

is parameterized by the batch size, number of epochs, and

the neural network architecture (a reference). A trained model

is output from the “Train” operation and then can be passed

to the “Output” and “ScoreModel” operations. The “Output”

operation saves the model back to DeepForge and the “Score-

Model” operation evaluates the trained model on the testing

data from the first operation.

Fig. 1. Train and Evaluate Pipeline

Executing pipelines results in the creation of Executions.

A pipeline’s execution is an acyclic data flow graph that is

isomorphic with the graph of the originating pipeline. This

graph is created by converting each of the pipeline’s operations

into a Job that corresponds to the original operation combined

with run status and running metadata (such as images or plots

generated during the execution).

As DeepForge focuses on training (deep) neural networks, it

also utilizes two additional concepts: Architectures and Layers.

As expected, an architecture represents a neural network ar-

chitecture while a layer represents a neural network layer. The

layers are connected in a directed acyclic graph forming the

architecture. Similar to operations, layers can have attributes

which are set at design time1. Unlike operation attributes,

layer attributes can also be set to another layer or sequence of

layers.

III. PLATFORM

Leveraging the concepts presented in Section II, DeepForge

provides a web-based platform for deep learning with three

principle design goals: accessibility, facilitating rapid develop-

ment and reproducibility of experiments. DeepForge utilizes

techniques in MIC along with intuitive, domain specific in-

terfaces to improve the accessibility of deep learning. Rapid

development is facilitated through promoting collaboration and

supporting the entire development cycle from the first iteration

to the last execution. Finally, DeepForge leverages WebGME’s

version control system to provide deeply integrated versioning

of both the code and the data throughout the entire develop-

ment process. In this section we will discuss the DeepForge

platform in more detail with an emphasis on how the design

supports these goals.

A. Accessibility

DeepForge uses WebGME, a framework for creating do-

main specific modeling environments, to create a domain spe-

cific modeling language for neural networks and the concepts

described in Section II. This enables DeepForge to leverage

the strengths of MIC, such as enforcing semantics of the

domain and easily generating artifacts of different formats

from the models, while also facilitating the development of

other modern features including real-time collaborative editing

and a deeply integrated version control system. DeepForge

provides a hybrid textual-visual development environment for

developing deep learning models. This allows users to leverage

the strengths of a domain specific modeling environment

when working at high levels of abstraction, such as designing

pipelines, and utilize the precision of a textual programming

environment when working at low levels of abstractions, such

as implementing custom operations. This visual editor is not

simply a diagram generated from the code but is an executable

domain model and is always guaranteed to provide an up-to-

date visual representation of the given pipeline or architecture.

Providing a visual interface for designing pipelines and

architectures not only lowers the barrier to entry for devel-

oping deep learning models but also provides a more easily

understandable diagram of the given structure. Lowering the

barrier to entry reduces the amount of time it takes for a

new user to be able to start developing and training neural

network models. Designing pipelines and architectures with a

visual interface can simplify complex machine learning tasks

1Layer attributes are analogous to constructor arguments in textual, object-
oriented programming.



as the interface provides a diagram of the given pipeline or

architecture. Textual interfaces are provided for some of the

more advanced features of DeepForge such as implementing

custom operations.

Fig. 2. Editing a Neural Network Architecture

Figure 2 shows the visual editor for creating neural network

architectures. This example shows a segment of a convolu-

tional neural network containing a two-dimensional convolu-

tion, max pooling layer, and a dropout layer. The dropout layer

is currently selected and expanded to show the configurable

attributes for the given layer. In this case, the dropout layer is

configured to filter out 25% of the values from the previous

max pooling layer (given by the value of “rate”). Values can be

editing in place; inputs and outputs to the layer can be added

using the light blue connection icons. This editor enforces

many of the constraints of the domain including the directed

acyclic graph structure of neural network architectures. In the

future, this editor will also provide more precise feedback

including dimensionality information and validation of layer

attributes.

B. Rapid Development

DeepForge includes a number of modern features to facili-

tate rapid development of deep learning models. This is done

primarily through promoting collaboration, reproducibility and

easy execution in a distributed environment.

DeepForge provides a number of features promoting col-

laboration. Google Docs-style real-time collaborative editing

allows users to simultaneously work together on a project.

Version control is deeply integrated into DeepForge and user

actions are automatically committed. This allows users to not

only see the recent changes made by collaborators but also

enables them to leverage branches to manage collaboration in

large projects.

Supporting the complete development cycle of creating

machine learning pipelines was paramount in DeepForge;

supporting both the creation and execution of the machine

learning pipelines not only greatly simplifies the user expe-

rience but also allows the environment to support developer

iteration, multi-tasking and record the results of the given

task. DeepForge supports the execution of machine learning

pipelines on a distributed environment. This includes not only

the ability to execute pipelines in a distributed environment

but also powerful utilities for monitoring and improving upon

existing pipelines. DeepForge provides real-time feedback

from running jobs, including creating plots, viewing images

or simply viewing the job’s console output. To promote

rapid development, DeepForge also enables the user to restart

individual jobs within an execution and caches intermediate

job results in an execution; this allows the user to reuse the

outputs of unchanged jobs and avoid redundant computation.

C. Reproducibility

The final design goal in DeepForge is to provide easy

reproducibility of experiments. This is achieved through the

use of automatic versioning during development and as well

as versioning both the code and the binary artifacts (such as

data and trained models) for the given experiments. Automatic

version control ensures that all changes and edits will be

recorded in the history of the project and are reproducible.

Versioning both the code and all associated binary artifacts,

DeepForge is able to ensure that not only the historical

versions of the code are reproducible for a given experiment

but also any associated data and models.

Fig. 3. Viewing commit history of a project in DeepForge

Leveraging the version control API’s provided by the We-

bGME framework, DeepForge is able to provide an automatic

version control system specific to the deep learning domain.

This includes automatically tagging commits when experi-

ments are run, creating commits automatically complete with

meaningful commit messages and committing intermediate

results from machine learning pipelines to promote repro-

ducibility and rapid iteration.

IV. CONCLUSION

This paper presented DeepForge, a robust development

platform for deep learning with a powerful underlying con-

ceptual model. DeepForge utilizes the strengths of model

integrated computing, including model analysis and manipu-

lation, to develop a deep learning platform that both provides

an intuitive visual interface enforcing domain semantics as

well as providing portable models which can be exported

to various deployment formats. Furthermore, DeepForge has



been designed to facilitate collaboration, reproducibility and

extensibility. This includes supporting real-time collaborative

editing, integrated version control and the remote execution of

machine learning pipelines.

Future work includes developing adapters for additional de-

ployment platforms such as NERSC and DOE supercomputers,

public cloud providers (eg, Amazon EC2 GPU instances),

and private clusters. Integration of publicly available scientific

datasets (OpenML, Kaggle, Open Science Data Cloud, etc) as

well as creating a registry for hosting operation definitions,

architectures, and trained models [25]–[27] is also planned.

We also plan to extend the existing extension architecture

to support custom data visualization capabilities. This will

enable the development and incorporation of third party cus-

tom model and data visualization utilities and will facilitate

the incorporation of the latest neural network introspection

and visualization techniques [28], [29]. Developing an active

community is particularly valuable as users can develop cus-

tom DeepForge extensions. Currently, extensions can be used

to create custom export formats (simplifying deployment of

machine learning pipelines); however, in the future, these will

also include custom model introspection utilities as well as

data visualization.

ACKNOWLEDGMENT

This material is supported by the National Science Foun-

dation under Grant Number SI2-SSE-1740151. Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[2] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro,
J. Chen, M. Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. Engel,
L. Fan, C. Fougner, T. Han, A. Y. Hannun, B. Jun, P. LeGresley, L. Lin,
S. Narang, A. Y. Ng, S. Ozair, R. Prenger, J. Raiman, S. Satheesh,
D. Seetapun, S. Sengupta, Y. Wang, Z. Wang, C. Wang, B. Xiao,
D. Yogatama, J. Zhan, and Z. Zhu, “Deep speech 2: End-to-end speech
recognition in english and mandarin,” CoRR, vol. abs/1512.02595,
2015. [Online]. Available: http://arxiv.org/abs/1512.02595

[3] O. Dor and Y. Zhou, “Real-spine: An integrated system of neural
networks for real-value prediction of protein structural properties,”
PROTEINS: Structure, Function, and Bioinformatics, vol. 68, no. 1, pp.
76–81, 2007.

[4] E. Byvatov, U. Fechner, J. Sadowski, and G. Schneider, “Comparison
of support vector machine and artificial neural network systems for
drug/nondrug classification,” Journal of chemical information and com-

puter sciences, vol. 43, no. 6, pp. 1882–1889, 2003.
[5] J. Khan, J. S. Wei, M. Ringner, L. H. Saal, M. Ladanyi, F. Westermann,

F. Berthold, M. Schwab, C. R. Antonescu, C. Peterson et al., “Clas-
sification and diagnostic prediction of cancers using gene expression
profiling and artificial neural networks,” Nature medicine, vol. 7, no. 6,
pp. 673–679, 2001.

[6] J. Lyons, A. Dehzangi, R. Heffernan, A. Sharma, K. Paliwal, A. Sattar,
Y. Zhou, and Y. Yang, “Predicting backbone cα angles and dihedrals
from protein sequences by stacked sparse auto-encoder deep neural
network,” Journal of computational chemistry, vol. 35, no. 28, pp. 2040–
2046, 2014.

[7] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel,
A. Aspuru-Guzik, and R. P. Adams, “Convolutional networks on graphs
for learning molecular fingerprints,” in Advances in neural information

processing systems, 2015, pp. 2224–2232.

[8] M. Razzano and E. Cuoco, “Image-based deep learning for classification
of noise transients in gravitational wave detectors,” Classical and

Quantum Gravity, vol. 35, no. 9, p. 095016, 2018.
[9] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint

arXiv:1603.04467, 2016.
[10] J. Sprinkle, “Model-integrated computing,” IEEE potentials, vol. 23,

no. 1, pp. 28–30, 2004.
[11] K. Czarnecki, T. Bednasch, P. Unger, and U. Eisenecker, “Generative

programming for embedded software: An industrial experience report,”
in International Conference on Generative Programming and Compo-

nent Engineering. Springer, 2002, pp. 156–172.
[12] J. A. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu, M. Humphrey,

and B. Ellis, “Vest: An aspect-based composition tool for real-time
systems,” in Real-Time and Embedded Technology and Applications

Symposium, 2003. Proceedings. The 9th IEEE. IEEE, 2003, pp. 58–69.
[13] C. Özgen, “Transforming mission space models to executable simulation

models,” Ph.D. dissertation, Middle East Technical University, 2011.
[14] K. Thramboulidis, “Model-integrated mechatronics-toward a new

paradigm in the development of manufacturing systems,” IEEE Trans-

actions on Industrial Informatics, vol. 1, no. 1, pp. 54–61, 2005.
[15] A. Childs, J. Greenwald, G. Jung, M. Hoosier, and J. Hatcliff, “Calm and

cadena: Metamodeling for component-based product-line development,”
Computer, vol. 39, no. 2, pp. 42–50, 2006.

[16] J. Sprinkle, “Generative components for hybrid systems tools.” Journal

of Object Technology, vol. 4, no. 3, pp. 33–38, 2004.
[17] X. Ke and K. Sierszecki, “Generative programming for a component-

based framework of distributed embedded systems,” in Proceedings of

the 6th OOPSLA Workshop on Domain-Specific Modeling (DSM06),
2006, pp. 113–122.

[18] M. Maróti, T. Kecskés, R. Kereskényi, B. Broll, P. Völgyesi, L. Jurácz,
and Á. Lédeczi, “Next generation (meta) modeling: Web-and cloud-
based collaborative tool infrastructure.” 2014.

[19] Z. Lattmann, T. Kecskés, P. Meijer, G. Karsai, P. Völgyesi, and
Á. Lédeczi, “Abstractions for modeling complex systems,” in Inter-

national Symposium on Leveraging Applications of Formal Methods.
Springer, 2016, pp. 68–79.

[20] P. S. Kumar, W. Emfinger, G. Karsai, D. Watkins, B. Gasser, and
A. Anilkumar, “Rosmod: a toolsuite for modeling, generating, deploying,
and managing distributed real-time component-based software using
ros,” Electronics, vol. 5, no. 3, p. 53, 2016.

[21] M. Beccani, H. Tunc, A. Taddese, E. Susilo, P. Völgyesi, A. Lédeczi,
and P. Valdastri, “Systematic design of medical capsule robots,” IEEE

Design & Test, vol. 32, no. 5, pp. 98–108, 2015.
[22] R. A. Austin, “A radiation-reliability assurance case using goal struc-

turing notation for a cubesat experiment,” Ph.D. dissertation, Vanderbilt
University, 2016.

[23] H. Neema, J. Sztipanovits, M. Burns, and E. Griffor, “C2wt-te: A model-
based open platform for integrated simulations of transactive smart
grids,” in Modeling and Simulation of Cyber-Physical Energy Systems

(MSCPES), 2016 Workshop on. IEEE, 2016, pp. 1–6.
[24] L. Deng, “The MNIST database of handwritten digit images for machine

learning research [best of the web],” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, 2012.

[25] J. N. Van Rijn, B. Bischl, L. Torgo, B. Gao, V. Umaashankar, S. Fischer,
P. Winter, B. Wiswedel, M. R. Berthold, and J. Vanschoren, “Openml:
A collaborative science platform,” in Joint European Conference on

Machine Learning and Knowledge Discovery in Databases. Springer,
2013, pp. 645–649.

[26] Kaggle, “Kaggle Datasets,” https://www.kaggle.com/datasets, accessed:
2017-02-1.

[27] R. L. Grossman, Y. Gu, J. Mambretti, M. Sabala, A. Szalay, and
K. White, “An overview of the open science data cloud,” in Proceed-

ings of the 19th ACM International Symposium on High Performance

Distributed Computing. ACM, 2010, pp. 377–384.
[28] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, “Under-

standing neural networks through deep visualization,” arXiv preprint

arXiv:1506.06579, 2015.
[29] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-

tional networks,” in European conference on computer vision. Springer,
2014, pp. 818–833.


